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We consider a model chemical kinetics system describing the dynamics of species
concentrations taking part is consecutive-competitive reaction in a continuopusly
stirred tank reactor. Corresponding dynamical system has a continua of equilibria.
Particular equilibrium to which the solution of the system tends depends on the ini-
tial conditions. The global behavior of the system and its reductions via the invariant
manifold and the boundary function methods are studied.
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1. Introduction

In this paper we consider a chemical kinetics model describing the dynam-
ics of concentrations of species taking part in the reactions (in a continuously
stirred tank reactor) according to the following reaction scheme

A+ B
k1−→ C, B + C

k±←→ D. (1.1)

This consecutive–competitive reaction sequence appears in several important
chemical engineering applications, such as in the reaction of ethylene oxid with
water, ammonia and alcohol as well as in halogenation and hydrogenation of
organic molecules [1].
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The reaction scheme (1.1) has been considered in [2] under the additional
assumption k± � 1, i.e., the second reaction is in a quasi-equilibrium, in order
to illustrate the basic idea of the boundary function method in studying the time
behavior of the concentrations of species A, B, C and D in a finite time interval.

The chemical kinetics system presented above has continua of equilibria
such that the equilibrium to which the system tends as t is going to ∞ depends
on the prescribed initial conditions. Such behavior often appears in chemical
kinetics models in which conservation relations for some species are observed,
and/or for which the initial concentrations of reacting species are not given in
exact proportions specified by the reaction kinetics scheme. In the latter case,
while some species are completely consumed during characteristic reaction time,
others still remain in the system.

Here we present the analysis of one such system. We note, however, that
some general approaches discussed in this paper can be used for the analysis of
other applied dynamical systems of this type as well. The results of this paper
can be summarized as follows. (i) First, we investigate the long-term behavior
of (1.1) without any additional conditions about the reaction rate constants. We
prove that (1.1) tends to an equilibrium which, indeed, depends on the initial
conditions. (ii) Under the assumption that the second reaction is in quasi-equi-
librium (i.e., corresponding forward and reverse reactions are fast, the reac-
tion rate constants k+ and k− are large, and their ratio k−/k+ is moderate)
we show the existence of an attracting invariant manifold, and construct an
approximation for this invariant manifold. The equilibrium to which the sys-
tem tends is located on the attracting invariant manifold. (iii) We construct an
approximation to the solution of the initial value problem under the quasi-
equilibrium assumption using the boundary function method [3–5]. Here, we
present an approach based on the reduced model as well as we describe an
algorithmic approach applied to the original system which can be implemented.
(iv) Finally, we discuss and compare the results obtained for the same original
problem using the method of invariant manifolds and the boundary function
method.

Before we proceed, let us make several comments on current applications of
the model reduction procedures. The reduction of a particular real life applied
model is possible when processes observed in the system are characterized by
widely varying “physical” scales. These could be different time scales (fast/slow
motions), spatial scales (large/small dimensions), etc. While the importance of
the asymptotic methods as a tool for explicit calculations has decreased over
the past decades due to appearance of fast computers and specialized software,
their role in elucidating the underlying dynamics (via qualitative analysis of
reduced models), and in determination of model parameters from experiments
has become more significant. Often the restrictions on the precision of the mea-
suring devices do not allow the identification of model parameters associated
with either very small or very large scales. In such situation, reduced models help
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to understand which parameters can be eliminated from the system, and which
combinations of parameters are, in principle, identifiable from experiment.

Our discussion of the asymptotic reduction procedure based on the bound-
ary function method approach has the goal to emphasize its features that
could make it useful as a part of computerized reduction algorithms. In [6]
we presented an algorithm for asymptotic model reduction based on invariant
manifold theory. Such algorithms are necessary for the reduction of large sys-
tems that appear in chemical engineering [2,7] atmospheric chemistry modeling
[8,9], and other areas [10].

2. Mathematical model and its reduced equivalent formulation

Let us keep the notation A, B, C, D for the concentration of the species
A, B, C, D, respectively. Then, the corresponding differential equations system
describing the behavior of (1.1) has the form

dA

dt̄
= −k1AB,

dB

dt̄
= −k1AB − k+BC + k−D,

dC

dt̄
= k1AB − k+BC + k−D, (2.1)

dD

dt̄
= k+BC − k−D,

where we assume that k1, k+ and k− are positive constants. We study the behav-
ior of system (2.1) satisfying the initial condition

A(0) = A0 > 0, B(0) = B0 > 0, C(0) = C0 � 0, D(0) = D0 � 0. (2.2)

Rescaling t̄ by k1 t̄ = t and taking into account that (2.1) has the first integral

B(t)+ C(t)+ 2D(t) = B0 + C0 + 2D0 (2.3)

we get from (2.1)

dA

dt
= −AB,

dB

dt
= −AB − k+

k1
BC + k−

2k1
(B0 + C0 + 2D0 − B − C), (2.4)

dC

dt
= AB − k+

k1
BC + k−

2k1
(B0 + C0 + 2D0 − B − C).

Now we introduce the new variable E by

E := C − B. (2.5)
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Then, we obtain from (2.4)

dA

dt
= −AB,

dB

dt
= −AB − k+

k1
B(E + B)+ k−

2k1
(B0 + C0 + 2D0 − 2B − E), (2.6)

dE

dt
= 2AB.

Exploiting the property that (2.6) has the first integral

2A(t)+ E(t) = 2A0 + C0 − B0, (2.7)

we get from (2.6)

dA
dt
= −AB,

dB
dt
= −AB − k+

k1
B(B − 2A+ 2A0 + C0 − B0)+ k−

k1
(B0 +D0 − B − A0 + A).

(2.8)

Thus, the initial value problem (2.1), (2.2) is equivalent to the initial value
problem (2.8),

A(0) = A0 > 0, B(0) = B0 > 0, (2.9)

where the right hand side of (2.8) depends on the initial conditions. In the next
section we determine the long-time behavior of (2.8), (2.9).

3. Long-time behavior

First we note that system (2.8) has A = 0 as an invariant straight line. Thus,
the trajectory of (2.8) starting at a point (Ā, B̄) with Ā > 0 can never reach the
region A < 0.

Next we investigate the equilibria of (2.8). For convenience we introduce the
parameter k by k := k−/k+. It is easy to verify that the equilibria of (2.8) are
located on the coordinate axes A = 0 and B = 0 and are defined by

(A1 := A0 − B0 −D0, B1 := 0), (3.1)

(Ae := 0, Be,1 := B+), (Ae := 0, Be,2 := B−),

where

B± := 1
2

[
− (2A0 −B0 +C0+ k)±

√
(2A0 − B0 + C0 + k)2 − 4k(A0 − B0 −D0)

]
.

(3.2)

From (3.1) to (3.2) we get
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Lemma 3.1. For all non-negative A0 and B0 system (2.8) has a unique equilib-
rium (A∗, B∗) in the positive orthant O+ := {(A, B) ∈ R2 : A � 0, B � 0}, where

(A∗, B∗) =
{

(A1, 0) for A0 � B0 +D0,

(0, B+) for A0 � B0 +D0.
(3.3)

In what follows we will prove that the trajectory of (2.8) starting at
(A0, B0) ∈ O+ has the equilibrium (A∗, B∗) as ω-limit set.

First we note that any straight line A = Ā, B > 0 with 0 < Ā � A0 is a
straight line without contact which is crossed by the trajectories of (2.8) from
right to left for increasing t , and that the straight line B = B0 + D0 is a line
without contact for 0 � A < A0 and such that the trajectories of (2.8) cross this
straight line for increasing t from above. Moreover, we can conclude that the tra-
jectory of (2.8) starting at (A0, B0) ∈ O+ will never leave the region 0 < A �A0,
B � B0 +D0 (see figure 1).

Now we distinguish the cases A0 � B0 +D0 and A0 > B0 +D0. In case
A0 � B0 +D0, the equilibrium is located on the axis A = 0. For A0 � B0 +D0,
the axis B = 0 is a straight line without contact for A � 0, where all trajec-
tories of (2.8) enter O+ for increasing t . For A0 = B0 + D0, the origin is an
equilibrium point, and all trajectories crossing B = 0 at a point (Ā, 0) with

(A0, B0 ) 

B0 +D0

( 0, B+)

AA0

B

0

Figure 1.
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Ā > 0, enter O+ for increasing t . Hence, for A0�B0+D0, the rectangular domain
R0:={(A, B) ∈ R2 : 0� A � A0, 0 � B �B0 +D0} is positively invariant and con-
tains no limit cycle and no separatrix loop. Therefore, according to the Poin-
care–Bendixson theory, the trajectory of (2.8) starting at (A0, B0) ∈ O+ tends for
t →+∞ to the equilibrium (0, B+) (see figure 1).

In case A0 > B0 +D0, (A0 − B0 −D0, 0) is the unique equilibrium of (2.8)
in O+. In what follows we consider the triangular domain T bounded by the
straight lines B = 0, A = A0 and B = A + B0 + D0 − A0. If we differen-
tiate B − A along system (2.8) and consider this derivative at the straight line
B = A+ B0 +D0 − A0 we get

d(B − A)

dt
= −B

k+

k1
(−A+ A0 +D0 + C0) < 0. (3.4)

Thus, we can conclude that T is positively invariant and that the trajectory of
(2.8) starting at (A0, B0) has (A0 − B0 −D0, 0) as ω-limit set (see figure 2).
Summarizing our investigations we have

Theorem . The solution of the initial value problem (2.1), (2.2) exist for all
t > 0 and tends for t →∞ to the equilibrium point of (A∗, B∗), defined in (3.3).

 0 A0  A 

 B 

(A0,B0 ) 

B0 + D0

B0

(A0-B0-D0 ,0 ) 

Figure 2.
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4. The case of fast reversible reaction

In what follows we assume

(A)
k+

k1
= 1

ε
� 1, and k = k−

k+
, (4.1)

that is, the second reaction in (1.1) is in quasi-equilibrium. From (2.8) and (4.1)
we obtain

dA
dt
= −AB,

ε dB
dt
= −ε AB − B(B − 2A+ 2A0 + C0 − B0)+ k(B0 +D0 − B − A0 + A).

(4.2)

Since ε is a small positive parameter system, (4.2) represents a singularly
perturbed system. Our goal is to study the solution of (4.2) satisfying the initial
condition (2.9), where we distinguish the problems,

1. Long-time behavior of the solution of (4.2), satisfying A(0) = A0 > 0,
B(0) = B0 > 0 (see (2.9)).

2. Approximation of the initial value problem (4.2), (2.9) on the finite inter-
val [0, T ].

4.1. Long-time behavior of the solution of (4.2),(2.9)

To study the long-time behavior of the solution of (4.2), (2.9) we apply the
method of invariant manifolds, i.e., we want to prove the existence of an invari-
ant manifold to system (4.2) of the form

B = h(A, ε),

which is exponentially attracting. To this end, we study the equilibria of the asso-
ciated equation

dB

dσ
= f (B) = −B(B−2A+2A0+C0−B0)+ k(B0 +D0 − B − A0 + A). (4.3)

Any equilibrium of (4.3) is defined by

B = B±(A) = 1
2

[
− (2A0 + C0 − B0 − 2A+ k)

±
√

(2A0 + C0 − B0 − 2A+ k)2 − 4k(A0 − A− B0 −D0)
]
.

(4.4)

Under the assumption

A0 − A− B0 −D0 � 0,
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which is equivalent to

A � A0 − B0 −D0, (4.5)

only the branch B = B+(A), A � max(0, A0−B0−D0), is located in the positive
orthant (see figure 3). We note that the graph of B = B+(A) intersects the A-axis
at the point A0 − B0 −D0.
In case

A0 − A− B0 −D0 � 0

it is easy to check that there is no equilibrium of (4.3) in the positive orthant.
In the next step we investigate the stability of the equilibria belonging to

the branch B+(A) for A � A0−B0−D0. For this purpose we determine the sign
of f ′B at B = B+(A). From (4.3) and (4.4) we get

f ′B(B+(A)) = −
√

(2A0 + C0 − B0 − 2A+ k)2 − 4k(A0 − A− B0 −D0).

The expression 2A0+C0−B0−2A+k vanishes only for A = A0+(1/2)(C0−B0+k),
and for this value of A we have A0−A−B0−D0= (−1/2)(C0+B0+ k)−D0 < 0.

B+(A) for A0<B0+D0 

B (A) for A0<B0+D0

B+(A) for A0>B0+D0

B (A) for A0>B0+D0

A

B

0

Figure 3.
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Consequently, we can conclude f ′B(B+(A)) < 0, that is, the equilibria are asymp-
totically stable. According to a general theorem on the existence of invariant
manifolds in singularly perturbed systems [11] we have the following result.

Lemma 4.1. For sufficiently small ε, system (4.2) has an invariant manifold of
the type

Mε := {(A, B) ∈ R2 : B = h(A, ε) = B+(A)+O(ε)}.
On the manifold Mε system (4.2) reads

dA

dt
= Ah(A, ε) = AB+(A)+O(ε). (4.6)

If we suppose A0 > B0 +D0 then, for sufficiently small ε, h(A, ε) has a positive
root A1 near A0−B0−D0, and h is positive (negative) for A < A1 (A > A1) (see
curve B+(A) for A0 > B0 +D0 in figure 3). Thus, the trajectory of (4.6) starting
at A0 has A1 as ω -limit point. In case A0 < B0 + D0, the function h(A, ε) is
positive for A > 0, and we can conclude that the trajectory tends to A = 0 as t

tends to infinity (see curve B+(A) for A0 < B0 + D0 in figure 3). Consequently,
we have got the same results about the long-time behavior of system (2.8) as in
Lemma 3.1.

In section 4.2 we look for an approximation of the solution of the initial
value problem (4.2), (2.9) on (0, T ).

4.2. Approximation of the solution of the initial value problem

We study the initial value problem (2.1), (2.2) assuming that the reversible
reaction is fast, that is, under the assumption (A). In that case, after rescaling of
time introduced in section 2 and with ε defined by (4.1) the original system can
be re-written in the form

dA

dt
= −AB,

ε
dB

dt
= −εAB − BC + kD,

ε
dC

dt
= εAB − BC + kD, (4.7)

ε
dD

dt
= BC − kD.

We supply (4.7) with the initial conditions (2.2) and investigate this initial value
problem by means of the boundary function method (see [5]) in order to get a
uniform asymptotic approximation of the solution on the interval [0, T ]. In what
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follows, we restrict ourselves to construction of the leading order approximation
of the solution. According to this method, we seek asymptotic expansions of the
unknown functions in the form

Z(t, ε) =
∞∑
i=0

εi(Z̄i(t)+�iZ(τ)), (4.8)

where Z stands for A, B, C and D. Here, Ēi(t), i = 0, 1, . . . , are the regular
parts of the asymptotic expansions describing the “slow” dynamics of the solu-
tion; �iE(τ), i = 0, 1, . . . , are the, so-called, boundary functions important in a
vicinity of the initial time t = 0, and τ = t/ε is the stretched variable. All the
boundary functions have to decay exponentially to zero as the stretched variable
τ →∞.

4.3. Construction of the leading order approximation for simplified equivalent
system

As we have demonstrated above, the initial value problems (4.7), (2.2) and
(4.2), (2.9) are equivalent. Therefore, we apply the boundary function method
first to (4.2), (2.9).

In the first step we determine the boundary function �0A(τ). For this pur-
pose we substitute (4.8) into (4.2), (2.9) and equate the terms multiplying ε−1 in
both sides. We get

d�A0

dτ
= 0.

Since �A0(t) must decay to zero for increasing τ we get

�A0(t) ≡ 0. (4.9)

Next, we determine the regular part Ā0(t). From the relations that represent
initial conditions in the leading order approximation,

Ā0(0)+�0A(0) = A0, (4.10)

B̄0(0)+�0B(0) = B0,

and from (4.9) we get Ā0(0) = A0.
Since the slow dynamics of (4.2) is determined by the scalar differential

equation (4.6), Ā0(t) is determined by the initial value problem

dĀ0

dt
= Ā0B+(Ā0), Ā0(0) = A0, (4.11)
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where B+(A) is defined by

B+(A) = 1
2

[
− (2A0 + C0 − B0 − 2A+ k) (4.12)

+
√

(2A0 + C0 − B0 − 2A+ k)2 − 4k(A0 − A− B0 −D0)
]
.

The regular part B̄0(t) is determined by

B̄0(t) = B+(Ā0(t)). (4.13)

Finally, we determine the boundary layer function �0B(τ). We obtain for it the
differential equation

d�0B(τ)

dτ
= −(2B̄0(0)+ C0 − B0 + k)�0B(τ)− (�0B(τ))2 (4.14)

= −(2B+(A0)+ C0 − B0 + k)�0B(τ)− (�0B(τ))2

with initial condition �0B(0) = B0 − B+(A0).
For our choice of approximation to the “slow manifold” (given by (4.12))

it can be shown that the differential equation (4.14) for the boundary function
�0B(τ) has a solution that decays exponentially to zero as τ → ∞ (see addi-
tional discussion of that in section 4.4). The justification of the leading order as-
ymptotics follows immediately from the results for singularly perturbed systems
of Tikhonov’s type (see, e.g., [5]).

4.4. The general approach description

We start with the original model formulation, and we apply the reduc-
tion procedure directly to (4.7), (2.2) without making preliminary simplifications
and eliminations of terms/equations from the system. We present the asymptotic
reduction procedure as a set of steps that can be implemented in a computer-
ized symbolic reduction algorithm. The justification of the procedure for a gen-
eral case can be found in [4,5]. In what follows, whenever we use the phrases like
“result can be found symbolically”, we mean that the result can be obtained with
the help of some symbolic computer software (e.g., MAPLE). Also, along with
explanation of theoretical steps of the procedure, we will mention the practical
(simpler) steps that can be undertaken to obtain the same “theoretical” result.

The uniform (on a time domain of interest) asymptotic approximation of
the solution of (4.7), (2.2) can be obtained by truncating (4.8).

Let us briefly describe the steps of construction of the leading order approx-
imation. First, we need to substitute (4.8) into (4.7), (2.2) and equate the terms
multiplying like powers of ε in both sides of the resulting equations separately
for regular and boundary functions. Practically, to obtain the equations for reg-
ular functions only, one can substitute the regular series (e.g., first three terms)
into the equations (4.7), and set ε = 0.
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For the regular functions in the leading order we obtain:

dĀ0

dt
= −Ā0B̄0,

0 = −B̄0C̄0 + kD̄0.

(4.15)

In fact, (4.15) contains three identical algebraic equations, and here we only
write out one of them. Thus, we arrive at a system of two equations involving
four unknown variables. From the second (algebraic) equation of (4.15) we can-
not find B̄0, C̄0, D̄0 uniquely. Instead, we can derive a family of solutions (that
is, express one of the unknowns, e.g., D̄0, in terms of the remaining two). Two
additional equations are needed to define all the regular functions in the lead-
ing order in the next step of the asymptotic algorithm. Such situation is often
referred to in the literature as the critical case or singular singularly perturbed
problem.

Practically, we do not need to resolve the algebraic equation in (4.15).
Instead, let us show how we can check the fact that three algebraic equations in
the leading order approximation are identical. We construct the Jacobian matrix
(only for the equations without derivatives in the right-hand side of (4.15)).

J =

−C̄0 −B̄0 k

−C̄0 −B̄0 k

C̄0 B̄0 −k


 . (4.16)

The rank of this matrix (rank=1), as well as the eigenvalues (λ1,2 = 0, λ3 =
−C̄0− B̄0− k) can be easily computed symbolically. Thus, we determine that we,
indeed, have only one equation instead of three.

For the regular functions of the first order we obtain:

dĀ1

dt
= −Ā1B̄0 − Ā0B̄1,

dB̄0

dt
+ Ā0B̄0 = −B̄1C̄0 − B̄0C̄1 + kD̄1,

dC̄0

dt
− Ā0B̄0 = −B̄1C̄0 − B̄0C̄1 + kD̄1,

dD̄0

dt
= B̄1C̄0 + B̄0C̄1 − kD̄1.

(4.17)

In the last three equations of (4.17) all the terms that do not contain func-
tions of the first order approximation have been moved to the left-hand sides.
Comparing the right-hand sides of the last three equations in (4.17) we can eas-
ily see that for the second and the third equations they are the same, and they
are equal to the negative of the right hand side of the fourth equation. Thus, the
left-hand sides of these equations must also satisfy the corresponding relations
(i.e., the left-hand sides of the second and the third equations must be equal to
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each other and to the left hand side of the fourth equation multiplied by -1).
These are the solvability conditions for the linear system of three algebraic equa-
tions for B̄1, C̄1, D̄1. In practical terms, the way to derive these solvability con-
ditions using symbolic manipulator can be described as follows. The matrix of
the mentioned above algebraic system is J given by (4.16). For the non-homoge-
neous linear system to be solvable, the non-homogeneity vector must be orthog-
onal to linearly independent eigenvectors corresponding to zero eigenvalues of J .
These eigenvectors are

v1 =

1

0
1


 , and v2 =


0

1
1


 . (4.18)

If we denote the non-homogeneity vector by F , i.e., F=(dB̄0/dt + Ā0B̄0, dC̄0/dt

− Ā0B̄0, dD̄0/dt), from orthogonality conditions, (vi · F) = 0, we obtain the fol-
lowing pair of equations:

dB̄0

dt
+ Ā0B̄0 + dD̄0

dt
= 0,

dC̄0

dt
− Ā0B̄0 + dD̄0

dt
= 0. (4.19)

The system consisting of (4.15), (4.19) contains four equations for four
unknown functions Ā0, B̄0, C̄0, D̄0. Let us show how the constraint B̄0C̄0− kD̄0

= 0 defining the approximation to the slow manifold can be eliminated from the
system. We note that this constraint can be differentiated (symbolically) to pro-
duce

dB̄0

dt
C̄0 + dC̄0

dt
B̄0 − k

dD̄0

dt
= 0. (4.20)

It can be easily seen that (4.19), (4.20) is a non-homogeneous system of
linear equations for dB̄0/dt , dC̄0/dt , and dD̄0/dt , that can be easily resolved
symbolically. Practically, to reduce the number of variables one of them may be
eliminated from the system. For example, it follows from (4.19), (4.20) that

k
dB̄0

dt
+ kĀ0B̄0 + dB̄0

dt
C̄0 + dC̄0

dt
B̄0 = 0,

k
dC̄0

dt
− kĀ0B̄0 + dB̄0

dt
C̄0 + dC̄0

dt
B̄0 = 0. (4.21)

Next, system (4.21) may be resolved with respect to dB̄0/dt and dC̄0/dt .

dB̄0

dt
= −Ā0B̄0(k + 2B̄0)

k + C̄0 + B̄0
,



70 L.V. Kalachev and K.R. Schneider / Global behavior

dC̄0

dt
= Ā0B̄0(k + 2C̄0)

k + C̄0 + B̄0
. (4.22)

So, we now have to solve the system consisting of the first equation of
(4.15) and two equations of (4.22). The function D̄0 can either be found from
the second equation of (4.15), or by solving the differential equation (4.20), after
substituting there (4.22), with corresponding condition.

Note that the initial values for the regular functions Ā0(0), B̄0(0), C̄0(0),
and D̄0(0) are not known yet. These initial values must belong to the approx-
imation of the manifold given by the second equation of (4.15). To find them
we need to consider problems for the boundary functions in the leading order
approximation. For them we can write,

d�0A

dτ
= 0,

d�0B

dτ
= −C̄0(0)�0B − B̄0(0)�0C −�0B�0C + k�0D,

d�0C

dτ
= −C̄0(0)�0B − B̄0(0)�0C −�0B�0C + k�0D, (4.23)

d�0D

dτ
= C̄0(0)�0B + B̄0(0)�0C +�0B�0C − k�0D.

Practically, the equations for boundary functions can be found by making substi-
tution (4.8) into the original system, multiplying the first equation by ε, chang-
ing the variable in the derivatives, setting ε = 0, dropping all the terms in the
remaining expressions that do not contain any boundary functions, and finally,
substituting for the regular functions their initial values (symbolically).

The boundary functions �0A(τ), �0B(τ), �0C(τ), and �0D(τ) together
with the regular functions in the leading order approximation must satisfy the
initial conditions,

Ā0(0)+�0A(0) = A0,

B̄0(0)+�0B(0) = B0,

C̄0(0)+�0C(0) = C0, (4.24)

D̄0(0)+�0D(0) = D0.

Also, the boundary functions must satisfy the conditions: �0A(τ)→ 0 for
τ →∞, etc. From (4.23), (4.24) and conditions at τ →∞ it follows that

�0A(τ) ≡ 0,

�0B(τ) = �0C(τ) = −�0D(τ). (4.25)

Practically, the above relations between �0B(τ), �0C(τ), and �0D(τ) can
be obtained as follows. We note that the linear part in the last three equations
of (4.23) is nothing but the Jacobian matrix (4.16) evaluated at t = 0. Since only
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one eigenvalue (λ3) of J corresponds to decaying solutions (under certain con-
ditions), with corresponding eigenvector v3 = (1, 1,−1)T giving the direction of
the decay in the phase space, the �-functions vector consisting of �0B, �0C,
and �0D must decay in the same direction. This means that the components of
�-functions vector must be proportional to v3, from which (4.25) immediately
follows.

Substituting (4.25) into (4.24) and using D̄0(0) = B̄0(0)C̄0(0) (which follows
from (4.15)), we obtain

Ā0(0) = A0,

B̄0(0)+�0B(0) = B0,

C̄0(0)+�0B(0) = C0, (4.26)

B̄0(0)C̄0(0)− k�0B(0) = kD0.

The first relation in (4.26) is the initial condition for Ā0. From the remain-
ing three equations we can find B̄0(0), C̄0(0), and �0B(0). Indeed, subtracting
the third equation of (4.26) from the second, we have

B̄0(0)− C̄0(0) = B0 − C0. (4.27)

Adding the second, multiplied by k, and the fourth equations of (4.26), we
obtain

kB̄0(0)+ B̄0(0)C̄0(0) = k(B0 +D0). (4.28)

Eliminating C̄0(0) from the above two expressions, we arrive at a quadratic
equation for B̄0(0),

B̄2
0 (0)+ (C0 − B0 + k)B̄0(0)− k(B0 +D0) = 0.

This equation has two solutions of which we choose the positive one.

B̄0(0) = 1
2

(
B0 − C0 − k +

√
(B0 − C0 − k)2 + 4k(B0 +D0)

)
. (4.29)

The reason for such choice can be explained by the condition that the zero
steady state of the differential system for boundary functions must be stable. For
the �-functions to decay to zero the eigenvalue λ3 = −C̄0(0) − B̄0(0) − k must
be negative. If we choose B̄0(0) < 0, then it will follow from (4.28) that

B̄0(0)(k + C̄0(0)) = k(B0 +D0) > 0,

and so, we must also have k + C̄0(0) < 0. But then λ3 will become positive and
the boundary functions will not decay to zero!

In practical terms, the positive root B̄0(0) can be chosen directly from
“physical” considerations: if small parameter tends to zero we have immediate
transition of the solution of the original problem from a given initial condition



72 L.V. Kalachev and K.R. Schneider / Global behavior

to the initial condition lying on slow manifold, and since concentrations must
be positive (or, at least, non-negative), B̄0(0) must also be positive (non-negative
B̄0(0) is also possible only with the choice of plus sign in (4.29)).

For known B̄0(0), the initial condition for C̄0 can be easily found from
(4.27),

C̄0(0) = B̄0(0)− B0 + C0. (4.30)

Now the system for regular functions in the leading order approximation
consisting of differential equation for Ā0 (from (4.15)), and two differential equa-
tions (4.22) for B̄0 and C̄0, with corresponding initial conditions given by the first
relation in (4.26), and relations (4.29), (4.30), can be solved numerically.

In section 5, we discuss implications of the above analysis from the
viewpoint of practical use of the constructed asymptotic approximations, and
compare the results produced by the method of invariant manifolds and the
boundary function method.

5. Discussion

Let us re-write the problems for the leading order approximation of the
solution of the original problem in the limit as ε → 0. “Physically”, this means
that we are looking at our original chemical kinetics system under the assump-
tion that the second, reversible, reaction characterized by reaction rate constants
k+ (for forward reaction) and k− (for reverse reaction) occurs instantaneously,
while the ratio k = k−/k+ stays bounded of order O(1). The limiting problem
for simplified equivalent system has the form (compare with (4.11)),

dĀ0

dt
= −Ā0B+(Ā0)

= −1
2
Ā0

[
− (2A0 + C0 − B0 − 2Ā0 + k)

+
√

(2A0 + C0 − B0 − 2Ā0 + k)2 − 4k(A0 − Ā0 − B0 −D0)
]
, (5.31)

Ā0(0) = A0.

Limiting system that was produced by the general approach procedure con-
sists of equations

dĀ0

dt
= −Ā0B̄0,

dB̄0

dt
= −Ā0B̄0(k + 2B̄0)

k + C̄0 + B̄0
,

dC̄0

dt
= Ā0B̄0(k + 2C̄0)

k + C̄0 + B̄0
,

(5.32)

with condition Ā0(0) = A0, and conditions (4.29) and (4.30) for B̄0 and C̄0,
respectively.
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Comparing the two limiting problems we note that both require some addi-
tional analysis to completely define their behavior at t → ∞. Such analysis
was performed previously in sections 3 and 4.1. The two approximate problems
presented above are equivalent in the following sense. When the solution Ā0 of
(5.31) is known, the approximations for B̄0 and C̄0 could be found from (4.12)
and (2.5), (2.7), respectively. These approximations will be equal to solutions Ā0,
B̄0 and C̄0 of (5.32) defined for corresponding initial conditions that represent an
orthogonal projection of the original conditions on the approximation to slow
manifold D̄0 = B̄0C̄0/k. Indeed, we can immediately see that substitution of
Ā0(0) = A0 into the expression (4.12) for B+ produces condition (4.29) for B̄0.
On the other hand, the first integrals that were used in obtaining the simplifica-
tion for the original system can also be constructed for (5.32). For example, it
follows from (5.32) that 2dĀ0/dt + dC̄0/dt − dB̄0/dt = 0, and thus, by virtue of
(4.27), 2Ā0(t)+ C̄0(t)− B̄0(t) = 2A0+C0−B0, which is exactly the leading order
approximation for (2.7).

Let us also comment on the stability properties of the boundary functions
constructed for both systems. We note that after substituting (4.25) into (4.23)
describing the boundary function system in the general approach case, we imme-
diately arrive at equation (4.14) for the simplified problem case. It is important
to mention that the choice of correct projection of the boundary condition onto
the slow manifold (see (4.29)) that guaranteed the asymptotic stability of the
zero solution for the boundary functions in the general case also justifies math-
ematically the “physical” choice of the B+ manifold made earlier for simplified
problem (there the choice was made to guarantee that the values of concentra-
tions in the system remain non-negative). Naturally, for such choice of the slow
manifold, the zero solution of equation (4.14) for the �-function is also asymp-
totically stable.

Note that in both reduced problems only one parameter, k, is present. From
the viewpoint of applications, the identification of this parameter will usually
be the most important problem in which the asymptotic reductions constructed
above are used. Currently, from the numerical analysis viewpoint, for available
numerical software and fast computers, obtaining the solution of the original
problem (2.1), (2.2) is as easy as obtaining the solution of either one of the lim-
iting problems. However, to solve the original problem all the parameter values
in the model must be specified, and this cannot always be done! Both presented
reduced models allow us to eliminate the “small” parameter dependence (this
parameter usually cannot be robustly identified during the solution of inverse
problems of parameter identification), and keep only the “moderate” parameter
(which can be identified from experimental data). While in the case of reduction
of previously simplified problem only one differential equation must be solved,
some amount of work must be done “by hand” (identification and calculation
of first integrals, etc.) to arrive at the final limiting problem. For more complex
systems the amount of such preliminary work may increase dramatically, and the
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steps of the simplification algorithm, which are necessarily problem dependent,
cannot be easily quantified for including them into a symbolic system reduction
algorithm. The general approach that we have presented, on the other hand, is
designed to minimize the amount of preliminary simplification work and is, thus,
more suitable for its inclusion as a part of the reduction algorithm in symbolic
reduction programs.
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